Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Bioengineering (Basel) ; 11(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38247955

RESUMEN

Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.

2.
Antibiotics (Basel) ; 12(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37887181

RESUMEN

Cholelithiasis has a major impact on global health and affects an average of 20% of the Western population. The main risk factors are females, age over 40 years, obesity and pregnancy. Most of the time it is asymptomatic, but when there are symptoms, they are generally nonspecific. Bile was considered sterile, but today it is known that it contains a complex bacterial flora, which causes biofilm in the gallbladder and gallstones. Among the main bacteria associated with cholelithiasis are Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, species of Enterococcus spp. and Acinetobacter spp. Antibiotic prophylaxis is used in an attempt to reduce postoperative infections, especially at the surgical site. However, some authors found no relationship between the use of antibiotic prophylaxis and a lower risk of surgical site infection. Thus, the aim of this double-blind randomized clinical trial was to compare the existence or not of bacteriobilia in patients at low anesthetic risk who underwent videolaparoscopic cholecystectomy, and its correlation with the use of prophylactic antibiotics. This study included 40 patients between 18 and 65 years old, diagnosed with cholelithiasis, symptomatic or not, with low anesthetic risk classified by the American Society of Anesthesiology in ASA I or ASA II, without complications or previous manipulation of the bile duct, who underwent elective video cholecystectomy, divided into two groups: Experimental Group A (n = 20), which received 2 g of Cephalotin (first-generation Cephalosporin, Keflin®, ABL antibiotics, Cosmópolis, Brazil) during anesthetic induction, and Control Group B (n = 20), where no antibiotics were administered until bile collection. After the procedure, a bile sample was collected and culture and antibiogram were performed. In the sample, 22 (55%) were classified as ASA I and 18 (45%) as ASA II. It was observed that 81.8% of the patients who had a positive culture did not use antibiotics, against 18.2% of those who used prophylaxis. When comparing patients regarding anesthetic risk, ASA I patients had a positive culture in 9.1% of cases, against 90.9% in patients classified as ASA II. It was concluded that patients with higher anesthetic risk (ASA II) have a higher chance of bacteriobilia and benefit from antibiotic prophylaxis when compared to patients with lower anesthetic risk (ASA I).

3.
Nutrients ; 15(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37764711

RESUMEN

Cocoa is considered a functional food because it is a natural source of macro- and micronutrients. Thus, cocoa is rich in vitamins, minerals, fiber, fatty acids, methylxanthines and flavonoids. In addition to favoring the metabolism of lipids and carbohydrates, the bioactive components of cocoa can have an antioxidant, anti-inflammatory and antimicrobial effect, providing numerous benefits for health. This literature review presents an overview of the effects of cocoa, fruit of the Theobroma cacao tree, on systemic and oral health. Several studies report that cocoa intake may contribute to the prevention of cardiovascular, neurodegenerative, immunological, inflammatory, metabolic and bone diseases, in addition to reducing the risk of vascular alterations and cognitive dysfunctions. On oral health, in vitro studies have shown that cocoa extract exerted an inhibitory effect on the growth, adherence and metabolism of cariogenic and periodontopathogenic bacteria, also inhibiting acid production, glycosyltransferase enzyme activity and the synthesis of insoluble polysaccharides. Additionally, administration of cocoa extract reduced biofilm accumulation and caries development in animals infected with cariogenic species. Clinical studies also reported that the use of mouthwashes containing cocoa extract reduced Streptococcus mutans counts in saliva and dental biofilm formation. In short, these studies highlight the nutritional value of cocoa, considering its clinical applicability, stability and economic accessibility.

4.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37242436

RESUMEN

Peripheral nerve injuries impair the patient's functional capacity, including those occurring in the facial nerve, which require effective medical treatment. Thus, we investigated the use of heterologous fibrin biopolymer (HFB) in the repair of the buccal branch of the facial nerve (BBFN) associated with photobiomodulation (PBM), using a low-level laser (LLLT), analyzing the effects on axons, muscles facials, and functional recovery. This experimental study used twenty-one rats randomly divided into three groups of seven animals, using the BBFN bilaterally (the left nerve was used for LLLT): Control group-normal and laser (CGn and CGl); Denervated group-normal and laser (DGn and DGl); Experimental Repair Group-normal and laser (ERGn and ERGl). The photobiomodulation protocol began in the immediate postoperative period and continued for 5 weeks with a weekly application. After 6 weeks of the experiment, the BBFN and the perioral muscles were collected. A significant difference (p < 0.05) was observed in nerve fiber diameter (7.10 ± 0.25 µm and 8.00 ± 0.36 µm, respectively) and axon diameter (3.31 ± 0.19 µm and 4.07 ± 0.27 µm, respectively) between ERGn and ERGl. In the area of muscle fibers, ERGl was similar to GC. In the functional analysis, the ERGn and the ERGI (4.38 ± 0.10) and the ERGI (4.56 ± 0.11) showed parameters of normality. We show that HFB and PBM had positive effects on the morphological and functional stimulation of the buccal branch of the facial nerve, being an alternative and favorable for the regeneration of severe injuries.

5.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615601

RESUMEN

Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.


Asunto(s)
Matriz Ósea , Fibrina , Ratas , Animales , Bovinos , Fibrina/uso terapéutico , Ratas Wistar , Regeneración Ósea , Rayos Láser , Bioingeniería , Colágeno , Andamios del Tejido
6.
Polymers (Basel) ; 14(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956667

RESUMEN

Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors "fibrin AND low-level laser therapy" and "fibrin AND photobiomodulation" were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.

7.
Polymers (Basel) ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631957

RESUMEN

There are several treatment methods available for bone repair, although the effectiveness becomes limited in cases of large defects. The objective of this pre-clinical protocol was to evaluate the grafting of hydroxyapatite/tricalcium phosphate (BCP) ceramic biomaterial (B; QualyBone BCP®, QualyLive, Amadora, Portugal) together with the heterologous fibrin biopolymer (FB; CEVAP/UNESP Botucatu, Brazil) and with photobiomodulation (PBM; Laserpulse®, Ibramed, Amparo, Brazil) in the repair process of bone defects. Fifty-six rats were randomly divided into four groups of seven animals each: the biomaterial group (G1/B), the biomaterial plus FB group (G2/BFB); the biomaterial plus PBM group (G3/B + PBM), and the biomaterial plus FB plus PBM group (G4/BFB + PBM). After anesthesia, a critical defect was performed in the center of the rats' parietal bones, then filled and treated according to their respective groups. The rats were euthanized at 14 and 42 postoperative days. Histomorphologically, at 42 days, the G4/BFB + PBM group showed a more advanced maturation transition, with more organized and mature bone areas forming concentric lamellae. A birefringence analysis of collagen fibers also showed a more advanced degree of maturation for the G4/BFB + PBM group. In the comparison between the groups, in the two experimental periods (14 and 42 days), in relation to the percentage of formation of new bone tissue, a significant difference was found between all groups (G1/B (5.42 ± 1.12; 21.49 ± 4.74), G2/BFB (5.00 ± 0.94; 21.77 ± 2.83), G3/B + PBM (12.65 ± 1.78; 29.29 ± 2.93), and G4/BFB + PBM (12.65 ± 2.32; 31.38 ± 2.89)). It was concluded that the use of PBM with low-level laser therapy (LLLT) positively interfered in the repair process of bone defects previously filled with the biocomplex formed by the heterologous fibrin biopolymer associated with the synthetic ceramic of hydroxyapatite and tricalcium phosphate.

8.
Biomolecules ; 12(5)2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625554

RESUMEN

Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in seeds, grains, tea, coffee, wine, chocolate, cocoa, vegetables and, mainly, in citrus fruits. Neohesperidin, hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory and antioxidant potential. Neohesperidin, in the form of neohesperidin dihydrochalcone (NHDC), also has dietary properties as a sweetener. In general, these flavanones have been investigated as a strategy to control bone diseases, such as osteoporosis and osteoarthritis. In this literature review, we compiled studies that investigated the effects of neohesperidin, hesperidin and its aglycone, hesperetin, on bone health. In vitro studies showed that these flavanones exerted an antiosteoclastic and anti- inflammatory effects, inhibiting the expression of osteoclastic markers and reducing the levels of reactive oxygen species, proinflammatory cytokines and matrix metalloproteinase levels. Similarly, such studies favored the osteogenic potential of preosteoblastic cells and induced the overexpression of osteogenic markers. In vivo, these flavanones favored the regeneration of bone defects and minimized inflammation in arthritis- and periodontitis-induced models. Additionally, they exerted a significant anticatabolic effect in ovariectomy models, reducing trabecular bone loss and increasing bone mineral density. Although research should advance to the clinical field, these flavanones may have therapeutic potential for controlling the progression of metabolic, autoimmune or inflammatory bone diseases.


Asunto(s)
Citrus , Flavanonas , Hesperidina , Osteoporosis , Densidad Ósea , Citrus/química , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Hesperidina/análogos & derivados , Hesperidina/farmacología , Hesperidina/uso terapéutico , Osteoporosis/tratamiento farmacológico
9.
Artículo en Inglés | MEDLINE | ID: mdl-35261617

RESUMEN

Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

10.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35160573

RESUMEN

In this experimental protocol, the objective was to evaluate the biological behavior of two xenogenic scaffolds in alcohol-induced rats through histomorphometric and Picrosirius Red staining analysis of non-critical defects in the tibia of rats submitted or not to alcohol ingestion at 25% v/v. Eighty male rats were randomly divided into four groups (n = 20 each): CG/B (water diet + Bio-Oss® graft, Geistlich Pharma AG, Wolhusen, Switzerland), CG/O (water diet + OrthoGen® graft, Baumer, Mogi Mirim, Brazil), AG/B (25% v/v alcohol diet + Bio-Oss® graft), and AG/O (25% v/v alcohol diet + OrthoGen® graft). After 90 days of liquid diet, the rats were surgically obtained, with a defect in the tibia proximal epiphysis; filled in according to their respective groups; and euthanized at 10, 20, 40 and 60 days. In two initial periods (10 and 20 days), all groups presented biomaterial particles surrounded by disorganized collagen fibrils. Alcoholic animals (AG/B and AG/O) presented, in the cortical and medullary regions, a reactive tissue with inflammatory infiltrate. In 60 days, in the superficial area of the surgical cavities, particles of biomaterials were observed in all groups, with new compact bone tissue around them, without complete closure of the lesion, except in non-alcoholic animals treated with Bio-Oss® xenograft (CG/B), where the new cortical interconnected the edges of the defect. Birefringence transition was observed in the histochemical analysis of collagen fibers by Picrosirius Red, in which all groups in periods of 10 and 20 days showed red-orange birefringence, and from 40 days onwards greenish-yellow birefringence, which demonstrates the characteristic transition from the formation of thin and disorganized collagen fibers initially to more organized and thicker later. In histomorphometric analysis, at 60 days, CG/B had the highest volume density of new bone (32.9 ± 1.15) and AG/O the lowest volume density of new bone (15.32 ± 1.71). It can be concluded that the bone neoformation occurred in the defects that received the two biomaterials, in all periods, but the Bio-Oss® was superior in the results, with its groups CG/B and AG/B displaying greater bone formation (32.9 ± 1.15 and 22.74 ± 1.15, respectively) compared to the OrthoGen® CG/O and AG/O groups (20.66 ± 2.12 and 15.32 ± 1.71, respectively), and that the alcoholic diet interfered negatively in the repair process and in the percentage of new bone formed.

11.
Polymers (Basel) ; 14(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35012210

RESUMEN

The aim of the present study was to evaluate the use of collagen, elastin, or chitosan biomaterial for bone reconstruction in rats submitted or not to experimental alcoholism. Wistar male rats were divided into eight groups, submitted to chronic alcohol ingestion (G5 to G8) or not (G1 to G4). Nasal bone defects were filled with clot in animals of G1 and G5 and with collagen, elastin, and chitosan grafts in G2/G6, G3/G7, and G4/G8, respectively. Six weeks after, all specimens underwent radiographic, tomographic, and microscopic evaluations. Bone mineral density was lower in the defect area in alcoholic animals compared to the abstainer animals. Bone neoformation was greater in the abstainer groups receiving the elastin membrane and in abstainer and alcoholic rats receiving the chitosan membrane (15.78 ± 1.19, 27.81 ± 0.91, 47.29 ± 0.97, 42.69 ± 1.52, 13.81 ± 1.60, 18.59 ± 1.37, 16.54 ± 0.89, and 37.06 ± 1.17 in G1 to G8, respectively). In conclusion, osteogenesis and bone density were more expressive after the application of the elastin matrix in abstainer animals and of the chitosan matrix in both abstainer and alcoholic animals. Chronic alcohol ingestion resulted in lower bone formation and greater formation of fibrous connective tissue.

12.
Cells ; 11(2)2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35053336

RESUMEN

Cell-based therapy is a promising treatment to favor tissue healing through less invasive strategies. Mesenchymal stem cells (MSCs) highlighted as potential candidates due to their angiogenic, anti-apoptotic and immunomodulatory properties, in addition to their ability to differentiate into several specialized cell lines. Cells can be carried through a biological delivery system, such as fibrin glue, which acts as a temporary matrix that favors cell-matrix interactions and allows local and paracrine functions of MSCs. Thus, the aim of this systematic review was to evaluate the potential of fibrin glue combined with MSCs in nerve regeneration. The bibliographic search was performed in the PubMed/MEDLINE, Web of Science and Embase databases, using the descriptors ("fibrin sealant" OR "fibrin glue") AND "stem cells" AND "nerve regeneration", considering articles published until 2021. To compose this review, 13 in vivo studies were selected, according to the eligibility criteria. MSCs favored axonal regeneration, remyelination of nerve fibers, as well as promoted an increase in the number of myelinated fibers, myelin sheath thickness, number of axons and expression of growth factors, with significant improvement in motor function recovery. This systematic review showed clear evidence that fibrin glue combined with MSCs has the potential to regenerate nervous system lesions.


Asunto(s)
Adhesivo de Tejido de Fibrina/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/efectos de los fármacos , Tejido Nervioso/lesiones , Humanos , Modelos Biológicos , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/fisiopatología
13.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484791

RESUMEN

Abstract Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

14.
J. venom. anim. toxins incl. trop. dis ; 28: e20210056, 2022. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1360567

RESUMEN

The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.(AU)


Asunto(s)
Materiales Biocompatibles , Biopolímeros , Colágeno , Terapia por Luz de Baja Intensidad
15.
Cells ; 10(9)2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34571972

RESUMEN

Cell therapy strategies using mesenchymal stem cells (MSCs) carried in fibrin glue have shown promising results in regenerative medicine. MSCs are crucial for tissue healing because they have angiogenic, anti-apoptotic and immunomodulatory properties, in addition to the ability to differentiate into several specialized cell lines. Fibrin sealant or fibrin glue is a natural polymer involved in the coagulation process. Fibrin glue provides a temporary structure that favors angiogenesis, extracellular matrix deposition and cell-matrix interactions. Additionally, fibrin glue maintains the local and paracrine functions of MSCs, providing tissue regeneration through less invasive clinical procedures. Thus, the objective of this systematic review was to assess the potential of fibrin glue combined with MSCs in bone or cartilage regeneration. The bibliographic search was performed in the PubMed/MEDLINE, LILACS and Embase databases, using the descriptors ("fibrin sealant" OR "fibrin glue") AND "stem cells" AND "bone regeneration", considering articles published until 2021. In this case, 12 preclinical and five clinical studies were selected to compose this review, according to the eligibility criteria. In preclinical studies, fibrin glue loaded with MSCs, alone or associated with bone substitute, significantly favored bone defects regeneration compared to scaffold without cells. Similarly, fibrin glue loaded with MSCs presented considerable potential to regenerate joint cartilage injuries and multiple bone fractures, with significant improvement in clinical parameters and absence of postoperative complications. Therefore, there is clear evidence in the literature that fibrin glue loaded with MSCs, alone or combined with bone substitute, is a promising strategy for treating lesions in bone or cartilaginous tissue.


Asunto(s)
Regeneración Ósea , Condrogénesis , Adhesivo de Tejido de Fibrina/uso terapéutico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Medicina Regenerativa , Andamios del Tejido , Animales , Adhesivo de Tejido de Fibrina/efectos adversos , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Modelos Animales , Conejos , Ratas , Resultado del Tratamiento , Cicatrización de Heridas
16.
Life (Basel) ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207199

RESUMEN

COVID-19 is a viral disease characterized as a pandemic by the World Health Organization in March 2020. Since then, researchers from all over the world have been looking for ways to fight this disease. Many cases of complications arise from insufficient immune responses due to low immunity, with intense release of pro-inflammatory cytokines that can damage the structure of organs such as the lung. Thus, the hypothesis arises that photobiomodulation therapy (PBMT) with the use of a low-level laser (LLLT) may be an ally approach to patients with COVID-19 since it is effective for increasing immunity, helping tissue repair, and reducing pro-inflammatory cytokines. This systematic review was performed with the use of PubMed/MEDLINE, Web of Science, Scopus and Google Scholar databases with the following keywords: "low-level laser therapy OR photobiomodulation therapy AND COVID-19". The inclusion criteria were complete articles published from January 2020 to January 2021 in English. The exclusion criteria were other languages, editorials, reviews, brief communications, letters to the editor, comments, conference abstracts, and articles that did not provide the full text. The bibliographic search found 18 articles in the Pubmed/MEDLINE database, 118 articles on the Web of Science, 23 articles on Scopus, and 853 articles on Google Scholar. Ten articles were included for qualitative synthesis, of which four commentary articles discussed the pathogenesis and the effect of PBMT in COVID-19. Two in vitro and lab experiments showed the effect of PBMT on prevention of thrombosis and positive results in wound healing during viral infection, using the intravascular irradiation (ILIB) associated with Phthalomethyl D. Two case reports showed PBMT improved the respiratory indexes, radiological findings, and inflammatory markers in severe COVID-19 patients. One case series reported the clinical improvement after PBMT on 14 acute COVID-19 patients, rehabilitation on 24 patients, and as a preventive treatment on 70 people. One clinical trial of 30 patients with severe COVID-19 who require invasive mechanical ventilation, showed PBMT-static magnetic field was not statistically different from placebo for the length of stay in the Intensive Care Unit, but improved diaphragm muscle function and ventilation and decreased the inflammatory markers. This review suggests that PBMT may have a positive role in treatment of COVID-19. Still, the necessity for more clinical trials remains in this field and there is not sufficient research evidence regarding the effects of PBMT and COVID-19 disease, and there is a large gap.

17.
Gastroenterology Res ; 14(1): 1-12, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33737994

RESUMEN

BACKGROUND: Inflammatory bowel diseases (IBD) are a group of immune and inflammatory diseases; and patients seem to be more vulnerable to influenza and coronavirus disease 2019 (COVID-19). These conditions are characterized by the augmented release of inflammatory cytokines that have been suggested as potential triggers for the acute respiratory distress syndrome, which may favor severe and even fatal outcomes. For these reasons, this review aims to evaluate what influenza and COVID-19 may represent for patients with IBD. METHODS: The search was performed in MEDLINE/PubMed, EMBASE, and Cochrane databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to build the review. RESULTS: The conventional therapies used by IBD patients may also interfere in the outcomes of influenza and COVID-19. Immune-suppressors agents are associated with a higher risk of infections due to the inhibition of intracellular signals necessary to the host act against pathogens. On the other hand, drugs related to the suppression of the production of cytokines in IBD could bring benefits to reduce mucosal inflammation, and for preventing pneumonia. Moreover, coronaviruses can bind to the target cells through angiotensin-converting enzyme 2 (ACE-2) receptor that is expressed in epithelial cells of the lung and largely the colon and the terminal ileum suggesting that human intestinal tract could be an alternative route for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSIONS: Once the cytokine storm observed in influenza and COVID-19 is similar to the cytokine pattern observed in IBD patients during the disease flares, the advice is that avoiding the infections is still an optimal option for IBD subjects.

18.
Materials (Basel) ; 13(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033088

RESUMEN

To assess the effects of chronic alcoholism on the repair of bone defects associated with xenograft. Forty male rats were distributed in: control group (CG, n = 20) and experimental group (EG, n = 20), which received 25% ethanol ad libitum after a period of adaptation. After 90 days of liquid diet, the rats were submitted to 5.0-mm bilateral craniotomy on the parietal bones, subdividing into groups: CCG (control group that received only water with liquid diet and the defect was filled with blood clot), BCG (control group that received only water with liquid diet and the defect was filled with biomaterial), CEG (alcoholic group that received only ethanol solution 25% v/v with liquid diet and the defect was filled with blood clot), and BEG (alcoholic group that received only ethanol solution 25% v/v with liquid diet and the defect was filled with biomaterial). In the analysis of body mass, the drunk animals presented the lowest averages in relation to non-drunk animals during the experimental period. Histomorphologically all groups presented bone formation restricted to the defect margins at 60 days, with bone islets adjacent to the BCG biomaterial particles. CEG showed significant difference compared to BEG only at 40 days (17.42 ± 2.78 vs. 9.59 ± 4.59, respectively). In the birefringence analysis, in early periods all groups showed red-orange birefringence turning greenish-yellow at the end of the experiment. The results provided that, regardless of clinical condition, i.e., alcoholic or non-alcoholic, in the final period of the experiment, the process of bone defect recomposition was similar with the use of xenograft or only clot.

19.
Materials (Basel) ; 12(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817369

RESUMEN

The use of low-level laser therapy (LLLT) with biomodulatory effects on biological tissues, currently called photobiomodulation therapy (PBMT), assists in healing and reduces inflammation. The application of biomaterials has emerged in bone reconstructive surgery, especially the use of bovine bone due to its biocompatibility. Due to the many benefits related to the use of PBMT and bovine bones, the aim of this research was to review the literature to verify the relationship between PBMT and the application of bovine bone in bone reconstruction surgeries. We chose the PubMed/MEDLINE, Web of Science, and Scopus databases for the search by matching the keywords: "Bovine bone AND low-level laser therapy", "Bovine bone AND photobiomodulation therapy", "Xenograft AND low-level laser therapy", and "Xenograft AND photobiomodulation therapy". The initial search of the three databases retrieved 240 articles, 18 of which met all inclusion criteria. In the studies concerning animals (17 in total), there was evidence of PBMT assisting in biomaterial-related conduction, formation of new bone, bone healing, immunomarker expression, increasing collagen fibers, and local inflammation reduction. However, the results disagreed with regard to the resorption of biomaterial particles. The only human study showed that PBMT with bovine bone was effective for periodontal regeneration. It was concluded that PBMT assists the process in bone reconstruction when associated with bovine bone, despite divergences between applied protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...